Strengthening of a model composite restoration using shape optimization: a numerical and experimental study

Dent Mater. 2010 Feb;26(2):126-34. doi: 10.1016/j.dental.2009.09.005. Epub 2009 Oct 9.

Abstract

Objective: This study aims to validate a cavity shape optimization approach for improving the debonding resistance of dental restorations by carrying out fracture tests on restored model teeth with standard and optimized cavity designs.

Method: The bio-mimetic stress-induced material transformation (SMT) optimization method was incorporated into the finite element (FE) program ABAQUS as a user material (UMAT) subroutine. The method uses stress minimization to optimize the cavity shape of a MOD restoration in an artificial premolar with special reference to the tooth-restoration interface under occlusal loads. The mechanical performance of the optimized design was first verified through FE analysis and then compared with that of the conventional design using fracture tests on model teeth.

Results: The SMT optimization process indicated a T-shape cavity as a more favorable design for the MOD restoration in the artificial premolar. Compared with the conventional parallel wall, or undercut design, the T-shape cavity was shown numerically to reduce the interfacial stresses by up to 69%, and experimentally to increase the mean debonding resistance of the model teeth by 23% (p<0.05).

Significance: Cavity shape optimization can help increase the debonding resistance of restored teeth by reducing the interfacial stresses between tooth and restoration under occlusal loads.

Publication types

  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Bite Force
  • Composite Resins*
  • Compressive Strength
  • Computer Simulation
  • Cyanoacrylates
  • Dental Cavity Preparation / methods*
  • Dental Debonding
  • Dental Restoration Failure
  • Dental Restoration, Permanent*
  • Dental Stress Analysis / methods
  • Elastic Modulus
  • Finite Element Analysis
  • Humans
  • Resin Cements
  • Shear Strength
  • Silicon Dioxide*
  • Stress, Mechanical
  • Tooth, Artificial
  • Zirconium*

Substances

  • Composite Resins
  • Cyanoacrylates
  • Resin Cements
  • Z100 composite resin
  • ethyl 2-cyanoacrylate
  • Silicon Dioxide
  • Zirconium