Femtosecond phase of charge separation in reaction centers of Chloroflexus aurantiacus

Biochemistry (Mosc). 2009 Aug;74(8):846-54. doi: 10.1134/s0006297909080057.

Abstract

Difference absorption spectroscopy with temporal resolution of approximately 20 fsec was used to study the primary phase of charge separation in isolated reaction centers (RCs) of Chloroflexus aurantiacus at 90 K. An ensemble of difference (light-minus-dark) absorption spectra in the 730-795 nm region measured at -0.1 to 4 psec delays relative to the excitation pulse was analyzed. Comparison with analogous data for RCs of HM182L mutant of Rhodobacter sphaeroides having the same pigment composition identified the 785 nm absorption band as the band of bacteriopheophytin Phi(B) in the B-branch. By study the bleaching of this absorption band due to formation of Phi(B)(-), it was found that a coherent electron transfer from P* to the B-branch occurs with a very small delay of 10-20 fsec after excitation of dimer bacteriochlorophyll P. Only at 120 fsec delay electron transfer from P* to the A-branch occurs with the formation of bacteriochlorophyll anion B(A)(-) absorption band at 1028 nm and the appearance of P* stimulated emission at 940 nm, as also occurs in native RCs of Rb. sphaeroides. It is concluded that a nuclear wave packet motion on the potential energy surface of P* after a 20-fsec light pulse excitation leads to the coherent formation of the P(+)Phi(B)(-) and P(+)B(A)(-) states.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chloroflexus / chemistry*
  • Chloroflexus / metabolism
  • Electron Transport
  • Kinetics
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / metabolism
  • Spectrum Analysis

Substances

  • Photosynthetic Reaction Center Complex Proteins