Shape, loading, and motion in the bioengineering design, fabrication, and testing of personalized synovial joints

J Biomech. 2010 Jan 5;43(1):156-65. doi: 10.1016/j.jbiomech.2009.09.021. Epub 2009 Oct 7.

Abstract

With continued development and improvement of tissue engineering therapies for small articular lesions, increased attention is being focused on the challenge of engineering partial or whole synovial joints. Joint-scale constructs could have applications in the treatment of large areas of articular damage or in biological arthroplasty of severely degenerate joints. This review considers the roles of shape, loading and motion in synovial joint mechanobiology and their incorporation into the design, fabrication, and testing of engineered partial or whole joints. Incidence of degeneration, degree of impairment, and efficacy of current treatments are critical factors in choosing a target for joint bioengineering. The form and function of native joints may guide the design of engineered joint-scale constructs with respect to size, shape, and maturity. Fabrication challenges for joint-scale engineering include controlling chemo-mechano-biological microenvironments to promote the development and growth of multiple tissues with integrated interfaces or lubricated surfaces into anatomical shapes, and developing joint-scale bioreactors which nurture and stimulate the tissue with loading and motion. Finally, evaluation of load-bearing and tribological properties can range from tissue to joint scale and can focus on biological structure at present or after adaptation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biomedical Engineering / methods*
  • Cartilage, Articular / physiology*
  • Joints / physiology*
  • Stress, Mechanical
  • Synovial Membrane / metabolism*
  • Tissue Engineering
  • Tissue Scaffolds
  • Weight-Bearing / physiology