Innate immune signaling pathways in animals: beyond reductionism

Int Rev Immunol. 2009;28(3-4):207-38. doi: 10.1080/08830180902839777.

Abstract

The immune system plays a crucial role in the maintenance of the stability and equilibrium of the internal environment in living organisms. The field of animal innate immunity has been the global focus of immunological research for decades. It is now known that the functions of innate immunity inevitably rely on the action of the molecular machines of the cascades or network of immune signaling pathways. Up to date, many researches on the immune signaling pathways in animals were focused on identifying the component functions or cascade molecules in details, which essentially followed a reductionist paradigm without paying high attention to the integrated features. The main purpose of this article was dedicated to accentuating the shift of this field from a reductionist to a systemic view. First, the former part of this article made efforts to summarize the main aspects of the signaling pathways of animal innate immunity including the web resources, the recapitulation of highlighted pathways, the cross-talks, and the evolutionary considerations, which heavily emphasized the integrated characteristics of the immune signaling pathways. Subsequently, the later part of this article was based on the holistic feature of the immune signaling pathways, mainly dedicated to propose a novel hypothesis. From a whole perspective, the oscillating balance hypothesis was deliberately formulated to characterize the holistic pattern of the signaling transduction network of animal innate immune system, which might help to understand some immunological phenomena through the integral principle of the immune network.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Immunity, Innate / physiology*
  • Signal Transduction / immunology*