DNA cleavage and methylation specificity of the single polypeptide restriction-modification enzyme LlaGI

Nucleic Acids Res. 2009 Nov;37(21):7206-18. doi: 10.1093/nar/gkp790.

Abstract

LlaGI is a single polypeptide restriction-modification enzyme encoded on the naturally-occurring plasmid pEW104 isolated from Lactococcus lactis ssp. cremoris W10. Bioinformatics analysis suggests that the enzyme contains domains characteristic of an mrr endonuclease, a superfamily 2 DNA helicase and a gamma-family adenine methyltransferase. LlaGI was expressed and purified from a recombinant clone and its properties characterised. An asymmetric recognition sequence was identified, 5'-CTnGAyG-3' (where n is A, G, C or T and y is C or T). Methylation of the recognition site occurred on only one strand (the non-degenerate dA residue of 5'-CrTCnAG-3' being methylated at the N6 position). Double strand DNA breaks at distant, random sites were only observed when two head-to-head oriented, unmethylated copies of the site were present; single sites or pairs in tail-to-tail or head-to-tail repeat only supported a DNA nicking activity. dsDNA nuclease activity was dependent upon the presence of ATP or dATP. Our results are consistent with a directional long-range communication mechanism that is necessitated by the partial site methylation. In the accompanying manuscript [Smith et al. (2009) The single polypeptide restriction-modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops], we demonstrate that this communication is via 1-dimensional DNA loop translocation. On the basis of this data and that in the third accompanying manuscript [Smith et al. (2009) An Mrr-family nuclease motif in the single polypeptide restriction-modification enzyme LlaGI], we propose that LlaGI is the prototype of a new sub-classification of Restriction-Modification enzymes, named Type I SP (for Single Polypeptide).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA Cleavage*
  • DNA Methylation*
  • DNA Restriction-Modification Enzymes / classification
  • DNA Restriction-Modification Enzymes / metabolism*
  • Kinetics
  • Nucleotides / metabolism
  • Substrate Specificity

Substances

  • DNA Restriction-Modification Enzymes
  • LlaGI restriction-modification system
  • Nucleotides