Abnormal mitochondrial dynamics and neurodegenerative diseases

Biochim Biophys Acta. 2010 Jan;1802(1):135-42. doi: 10.1016/j.bbadis.2009.09.013. Epub 2009 Sep 30.

Abstract

Mitochondrial dysfunction is a prominent feature of various neurodegenerative diseases. A deeper understanding of the remarkably dynamic nature of mitochondria, characterized by a delicate balance of fission and fusion, has helped to fertilize a recent wave of new studies demonstrating abnormal mitochondrial dynamics in neurodegenerative diseases. This review highlights mitochondrial dysfunction and abnormal mitochondrial dynamics in Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and Huntington disease and discusses how these abnormal mitochondrial dynamics may contribute to mitochondrial and neuronal dysfunction. We propose that abnormal mitochondrial dynamics represents a key common pathway that mediates or amplifies mitochondrial dysfunction and neuronal dysfunction during the course of neurodegeneration.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Alzheimer Disease / metabolism
  • Animals
  • Humans
  • Mitochondria / metabolism*
  • Neurodegenerative Diseases / metabolism*
  • Neurodegenerative Diseases / physiopathology
  • Parkinson Disease / metabolism