Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature

Rev Sci Instrum. 2009 Sep;80(9):095103. doi: 10.1063/1.3213612.

Abstract

A simple and cost effective nanocluster ion source for the deposition of size selected metal nanocluster has been developed based on the dc magnetron discharge (including pulsed dc discharge). The most important and interesting feature of this cluster source is that it is working at room temperature, cooled by chilled water during the experiment. There is no extraction unit in this device and the cluster streams flow only due to the pressure gradient from source chamber to substrate via quadrupole mass filter. It has provision of multiple substrate holders in the deposition chamber, which can be controlled manually. The facility consists of quadrupole mass filter (QMF 200), which can select masses in the range of 2-125 000 atoms depending on the target materials, with a constant mass resolution (M/DeltaM approximately 25). The dc magnetron discharge at a power of about 130 W with Ar as feed/buffer gas was used to produce the Cu nanocluster in an aggregation tube and deposited on Si (100) wafer temperature.