Phosphorylation of Williams syndrome transcription factor by MAPK induces a switching between two distinct chromatin remodeling complexes

J Biol Chem. 2009 Nov 20;284(47):32472-82. doi: 10.1074/jbc.M109.009738. Epub 2009 Sep 23.

Abstract

Changes in the environment of a cell precipitate extracellular signals and sequential cascades of protein modification and elicit nuclear transcriptional responses. However, the functional links between intracellular signaling-dependent gene regulation and epigenetic regulation by chromatin-modifying proteins within the nucleus are largely unknown. Here, we describe novel epigenetic regulation by MAPK cascades that modulate formation of an ATP-dependent chromatin remodeling complex, WINAC (WSTF Including Nucleosome Assembly Complex), an SWI/SNF-type complex containing Williams syndrome transcription factor (WSTF). WSTF, a specific component of two chromatin remodeling complexes (SWI/SNF-type WINAC and ISWI-type WICH), was phosphorylated by the stimulation of MAPK cascades in vitro and in vivo. Ser-158 residue in the WAC (WSTF/Acf1/cbpq46) domain, located close to the N terminus of WSTF, was identified as a major phosphorylation target. Using biochemical analysis of a WSTF mutant (WSTF-S158A) stably expressing cell line, the phosphorylation of this residue (Ser-158) was found to be essential for maintaining the association between WSTF and core BAF complex components, thereby maintaining the ATPase activity of WINAC. WINAC-dependent transcriptional regulation of vitamin D receptor was consequently impaired by this WSTF mutation, but the recovery from DNA damage mediated by WICH was not impaired. Our results suggest that WSTF serves as a nuclear sensor of the extracellular signals to fine-tune the chromatin remodeling activity of WINAC. WINAC mediates a previously unknown MAPK-dependent step in epigenetic regulation, and this MAPK-dependent switching mechanism between the two functionally distinct WSTF-containing complexes might underlie the diverse functions of WSTF in various nuclear events.

Publication types

  • Retracted Publication

MeSH terms

  • Animals
  • Cell Line
  • Cell Line, Tumor
  • Chromatin / chemistry*
  • DNA Damage
  • Epigenesis, Genetic
  • Gene Expression Regulation
  • Humans
  • MAP Kinase Signaling System*
  • Mice
  • Mice, Transgenic
  • Mutation
  • Phosphorylation
  • Protein Structure, Tertiary
  • Transcription Factors / chemistry*
  • Transcription Factors / metabolism

Substances

  • BAZ1B protein, human
  • Chromatin
  • Transcription Factors