Synthesis, biological evaluation, and structure-activity relationships for 5-[(E)-2-arylethenyl]-3-isoxazolecarboxylic acid alkyl ester derivatives as valuable antitubercular chemotypes

J Med Chem. 2009 Oct 22;52(20):6287-96. doi: 10.1021/jm900513a.

Abstract

Tuberculosis (TB), mostly caused by Mycobacterium tuberculosis (Mtb), is one of the leading causes of death from infectious disease worldwide. Its coinfection with HIV and the emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) strains have further worsened the TB pandemic. Despite its global impact, TB is considered a neglected disease and no new anti-TB therapeutics have been introduced over the last four decades. The nonreplicating persistent form of TB (NRP-TB) is responsible for the length of the treatment and is the putative cause of treatment failure. Therefore, new anti-TB agents, which are active against both the replicating form of Mtb (R-TB) and NRP-TB, are urgently needed. Herein, we report the synthesis and structure-activity relationships (SAR) of a series of 5-[(E)-2-arylethenyl]-3-isoxazolecarboxylic acid alkyl esters as potent anti-TB agents. Several compounds had submicromolar minimum inhibitory concentrations (MIC) against R-TB and were active against NRP-TB in the low micromolar range, thus representing attractive lead compounds for the possible development of new anti-TB agents.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antitubercular Agents / chemical synthesis
  • Antitubercular Agents / chemistry*
  • Antitubercular Agents / pharmacology*
  • Carboxylic Acids / chemistry*
  • Esters / chemical synthesis
  • Esters / chemistry*
  • Esters / pharmacology*
  • Hydrophobic and Hydrophilic Interactions
  • Microbial Sensitivity Tests
  • Mycobacterium tuberculosis / drug effects
  • Structure-Activity Relationship

Substances

  • Antitubercular Agents
  • Carboxylic Acids
  • Esters