Chronic lead exposure alters presynaptic calcium regulation and synaptic facilitation in Drosophila larvae

Neurotoxicology. 2009 Sep;30(5):777-84. doi: 10.1016/j.neuro.2009.08.007. Epub 2009 Sep 2.

Abstract

Prolonged exposure to inorganic lead (Pb(2+)) during development has been shown to influence activity-dependent synaptic plasticity in the mammalian brain, possibly by altering the regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)). To explore this possibility, we studied the effect of Pb(2+) exposure on [Ca(2+)](i) regulation and synaptic facilitation at the neuromuscular junction of larval Drosophila. Wild-type Drosophila (CS) were raised from egg stages through the third larval instar in media containing either 0 microM, 100 microM or 250 microM Pb(2+) and identified motor terminals were examined in late third-instar larvae. To compare resting [Ca(2+)](i) and the changes in [Ca(2+)](i) produced by impulse activity, the motor terminals were loaded with a Ca(2+) indicator, either Oregon Green 488 BAPTA-1 (OGB-1) or fura-2 conjugated to a dextran. We found that rearing in Pb(2+) did not significantly change the resting [Ca(2+)](i) nor the Ca(2+) transient produced in synaptic boutons by single action potentials (APs); however, the Ca(2+) transients produced by 10 Hz and 20 Hz AP trains were larger in Pb(2+)-exposed boutons and decayed more slowly. For larvae raised in 250 microM Pb(2+), the increase in [Ca(2+)](i) during an AP train (20 Hz) was 29% greater than in control larvae and the [Ca(2+)](i) decay tau was 69% greater. These differences appear to result from reduced activity of the plasma membrane Ca(2+) ATPase (PMCA), which extrudes Ca(2+) from these synaptic terminals. These findings are consistent with studies in mammals showing a Pb(2+)-dependent reduction in PMCA activity. We also observed a Pb(2+)-dependent enhancement of synaptic facilitation at these larval neuromuscular synapses. Facilitation of EPSP amplitude during AP trains (20 Hz) was 55% greater in Pb(2+)-reared larvae than in controls. These results showed that Pb(2+) exposure produced changes in the regulation of [Ca(2+)](i) during impulse activity, which could affect various aspects of nervous system development. At the mature synapse, this altered [Ca(2+)](i) regulation produced changes in synaptic facilitation that are likely to influence the function of neural networks.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biophysics
  • Calcium / metabolism*
  • Dose-Response Relationship, Drug
  • Drosophila
  • Electric Stimulation / methods
  • Excitatory Postsynaptic Potentials / drug effects
  • Female
  • Larva / cytology*
  • Larva / growth & development
  • Larva / metabolism
  • Lead / pharmacology*
  • Male
  • Neuromuscular Junction / drug effects*
  • Patch-Clamp Techniques
  • Presynaptic Terminals / drug effects*

Substances

  • Lead
  • Calcium