Alternative-splicing-based bicistronic vectors for ratio-controlled protein expression and application to recombinant antibody production

Nucleic Acids Res. 2009 Nov;37(20):e134. doi: 10.1093/nar/gkp716. Epub 2009 Sep 3.

Abstract

In the last decade polycistronic vectors have become essential tools for both basic science and gene therapy applications. In order to co-express heterologous polypeptides, different systems have been developed from Internal Ribosome Entry Site (IRES) based vectors to the use of the 2A peptide. Unfortunately, these methods are not fully suitable for the efficient and reproducible modulation of the ratio between the proteins of interest. Here we describe a novel bicistronic vector type based on the use of alternative splicing. By modifying the consensus sequence that governs splicing, we demonstrate that the ratio between the synthesized proteins could easily vary from 1 : 10 to 10 : 1. We have established this system with luciferase genes and we extended its application to the production of recombinant monoclonal antibodies. We have shown that these vectors could be used in several typical cell lines with similar efficiencies. We also present an adaptation of these vectors to hybrid alternative splicing/IRES constructs that allow a ratio-controlled expression of proteins of interest in stably transfected cell lines.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alternative Splicing*
  • Animals
  • Antibodies, Monoclonal / biosynthesis
  • Antibodies, Monoclonal / genetics*
  • Cricetinae
  • Genetic Vectors*
  • Humans
  • Luciferases / analysis
  • Polyribosomes / metabolism
  • RNA Splice Sites
  • RNA, Messenger / metabolism
  • Recombinant Proteins / biosynthesis
  • Recombinant Proteins / genetics
  • Transfection

Substances

  • Antibodies, Monoclonal
  • RNA Splice Sites
  • RNA, Messenger
  • Recombinant Proteins
  • Luciferases