Hydrogen-bonding-assisted self-assembly: monodisperse hollow nanoparticles made easy

J Am Chem Soc. 2009 Sep 30;131(38):13594-5. doi: 10.1021/ja905240w.

Abstract

A facile self-assembly process for synthesizing monodisperse hollow spherical nanoparticles that are less than 50 nm in diameter has been developed. Preferential hydrogen bonding between an amphiphilic block copolymer (polystyrene-b-polyvinylpyridine, PS-PVP) and a hydrogen-bonding agent (HA) enables formation of monodisperse spherical solid polymer nanoparticles with the HA residing in the particle core surrounded by the polymer. Removal of the HA results in monodisperse hollow nanoparticles with tunable hollow cavity size and internal surface reactivity. Formation of ordered hollow nanoparticle films with controlled index of refraction for antireflective coating applications is demonstrated.