Appearance of microvascular obstruction on high resolution first-pass perfusion, early and late gadolinium enhancement CMR in patients with acute myocardial infarction

J Cardiovasc Magn Reson. 2009 Aug 21;11(1):33. doi: 10.1186/1532-429X-11-33.

Abstract

Background: The presence and extent of microvascular obstruction (MO) after acute myocardial infarction can be measured by first-pass gadolinium-enhanced perfusion cardiovascular magnetic resonance (CMR) or after gadolinium injection with early or late enhancement (EGE/LGE) imaging. The volume of MO measured by these three methods may differ because contrast agent diffusion into the MO reduces its apparent extent over time. Theoretically, first-pass perfusion CMR should be the most accurate method to measure MO, but this technique has been limited by lower spatial resolution than EGE and LGE as well as incomplete cardiac coverage. These limitations of perfusion CMR can be overcome using spatio-temporal undersampling methods. The purpose of this study was to compare the extent of MO by high resolution first-pass k-t SENSE accelerated perfusion, EGE and LGE.

Methods: 34 patients with acute ST elevation myocardial infarction, treated successfully with primary percutaneous coronary intervention (PPCI), underwent CMR within 72 hours of admission. k-t SENSE accelerated first-pass perfusion MR (7 fold acceleration, spatial resolution 1.5 mm x 1.5 mm x 10 mm, 8 slices acquired over 2 RR intervals, 0.1 mmol/kg Gd-DTPA), EGE (14 minutes after injection with a fixed TI of 440 ms) and LGE images (1012 minutes after injection, TI determined by a Look-Locker scout) were acquired. MO volume was determined for each technique by manual planimetry and summation of discs methodology.

Results: k-t SENSE first-pass perfusion detected more cases of MO than EGE and LGE (22 vs. 20 vs. 14, respectively). The extent of MO imaged by first-pass perfusion (median mass 4.7 g, IQR 6.7) was greater than by EGE (median mass 2.3 g, IQR 7.1, p = 0.002) and LGE (median mass 0.2 g, IQR 2.4, p = 0.0003). The correlation coefficient between MO mass measured by first-pass perfusion and EGE was 0.91 (p < 0.001).

Conclusion: The extent of MO following acute myocardial infarction appears larger on high-resolution first-pass perfusion CMR than on EGE and LGE. Given the inevitable time delay between gadolinium administration and acquisition of either EGE or LGE images, high resolution first-pass perfusion imaging may be the most accurate method to quantify MO.

Publication types

  • Comparative Study
  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angioplasty, Balloon, Coronary
  • Contrast Media* / administration & dosage
  • Coronary Circulation
  • Coronary Vessels / pathology*
  • Coronary Vessels / physiopathology
  • England
  • Female
  • Gadolinium DTPA* / administration & dosage
  • Humans
  • Image Interpretation, Computer-Assisted
  • Magnetic Resonance Imaging*
  • Male
  • Microvessels / pathology*
  • Microvessels / physiopathology
  • Middle Aged
  • Myocardial Infarction / complications
  • Myocardial Infarction / pathology*
  • Myocardial Infarction / physiopathology
  • Myocardial Infarction / therapy
  • Myocardial Perfusion Imaging / methods*
  • No-Reflow Phenomenon / etiology
  • No-Reflow Phenomenon / pathology*
  • No-Reflow Phenomenon / physiopathology
  • Observer Variation
  • Predictive Value of Tests
  • Reproducibility of Results

Substances

  • Contrast Media
  • Gadolinium DTPA