Aberration effects on femtosecond pulses generated by nonideal achromatic doublets

Appl Opt. 2009 Aug 20;48(24):4723-34. doi: 10.1364/ao.48.004723.

Abstract

There are three main effects that affect the femtosecond pulse focusing process near the focal plane of a refractive lens: the group velocity dispersion (GVD), the propagation time difference (PTD), and the aberrations of the lens. In this paper we study in detail these effects generated by nonideal achromatic doublets based on a Fourier-optical analysis and Seidel aberration theory considering lens material, wavelength range, lens surface design, and temporally and spatially uniform and Gaussian intensity distributions. We show that the residual chromatic aberration in achromatic lenses, which has been neglected so far, has a considerable effect on the focusing of pulses shorter than 20 fs in the spectral range between the UV and IR, 300 to 1100 nm, and is particularly important in the blue and UV spectral range. We present a general fitted function for an estimation of the pulse stretching parameter, which depends only on the numerical aperture and focal length of the doublet as well as the wavelength of the carrier of the pulse.