Controllable adsorption and ideal H-aggregation behaviors of phenothiazine dyes on the tungsten oxide nanocolloid surface

Langmuir. 2010 Jan 5;26(1):117-25. doi: 10.1021/la902174s.

Abstract

The monomer-aggregate equilibrium of four phenothiazine (PN) dyes, containing thionine (TH), methylene blue (MB), new methylene blue (NMB), and 1,9-dimethylmethylene blue (DMB), in the tungsten(VI) oxide (WO(3)) nanocolloid solution has been investigated by means of UV-vis spectroscopy. Addition of PN dye into the WO(3) nanocolloid solution brought about significant changes in the absorption spectrum, suggesting the formation of H-type (face-to-face fashion) trimer on the WO(3) nanocolloid surface. The adsorptivity of PN dyes onto the WO(3) nanocolloid surface was diminished by the raising the ionic strength, indicating the evidence of the electrostatic interaction between cationic PN dye and negatively charged WO(3) nanocolloids. The detail analysis of each spectral data provided insight into the effect of molecular structure of PN dyes on the adsorption and aggregation behaviors on the WO(3) nanocolloid surface. Moreover, in situ measurement of PN dye aggregation using the centrifugal liquid membrane (CLM) technique revealed that the aggregation of PN dyes on the WO(3) nanocolloid surface proceeded in a two-step three-stage (monomer --> dimer --> trimer) formation. The aggregation mechanism of PN dyes on the WO(3) nanocolloid surface was discussed on the basis of Kasha's exciton theory.