Estimating the sorption of pharmaceuticals based on their pharmacological distribution

Environ Toxicol Chem. 2009 Dec;28(12):2572-9. doi: 10.1897/08-587.1. Epub 2009 Aug 12.

Abstract

Pharmaceuticals released into aquatic systems are expected to sorb to sediments to varying degrees. Their sorption is likely to influence their fate and, ultimately, the risk they pose to aquatic organisms. This has led to the European Medicines Agency requiring an assessment of affinity to solids, using batch sorption methods, for the environmental risk assessment (ERA) of new human medicines. However, a large body of data is generated before pharmaceuticals are released onto the market, including their extent of distribution throughout the human body, measured by the volume of distribution (VD). In the present study, batch sorption experiments were undertaken using 12 different soils and sediments to determine whether VD was a good indicator of experimental Kd values for 21 pharmaceuticals. The r2 values obtained from the regressions ranged from 0.39 to 0.76 (with a median value of 0.5) and all regressions were found to be significant. The use of this more comprehensive set of soils and sediments was consistent with previous studies comparing VD and Kd, despite the Kd values of the selected pharmaceuticals varying greatly between soils. The relationship between Kd and VD was greatly improved when zwitterionic antibiotics and carbamazepine were not included, possibly due to complex sorption or pharmacokinetic behavior. There are likely to be a number of factors affecting the sorption of pharmaceuticals that cannot be explained by VD. However, further work may elucidate how these factors can be accounted for, enabling VD to be effectively used to facilitate the ERA of human pharmaceuticals with already available information.

MeSH terms

  • Adsorption
  • Geologic Sediments / chemistry*
  • Hydrogen-Ion Concentration
  • Pharmaceutical Preparations / chemistry*
  • Soil Pollutants / chemistry*

Substances

  • Pharmaceutical Preparations
  • Soil Pollutants