Variations in the mechanical properties of Alouatta palliata molar enamel

Am J Phys Anthropol. 2010 Jan;141(1):7-15. doi: 10.1002/ajpa.21126.

Abstract

Teeth have provided insights into many topics including primate diet, paleobiology, and evolution, due to the fact that they are largely composed of inorganic materials and may remain intact long after an animal is deceased. Previous studies have reported that the mechanical properties, chemistry, and microstructure of human enamel vary with location. This study uses nanoindentation to map out the mechanical properties of Alouatta palliata molar enamel on an axial cross-section of an unworn permanent third molar, a worn permanent first molar, and a worn deciduous first molar. Variations were then correlated with changes in microstructure and chemistry using scanning electron microscopy and electron microprobe techniques. The hardness and Young's modulus varied with location throughout the cross-sections from the occlusal surface to the dentin-enamel junction (DEJ), from the buccal to lingual sides, and also from one tooth to another. These changes in mechanical properties correlated with changes in the organic content of the tooth, which was shown to increase from approximately 6% near the occlusal surface to approximately 20% just before the DEJ. Compared to human enamel, the Alouatta enamel showed similar microstructures, chemical constituents, and magnitudes of mechanical properties, but showed less variation in hardness and Young's modulus, despite the very different diet of this species.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alouatta / anatomy & histology*
  • Animals
  • Dental Enamel / chemistry
  • Dental Enamel / physiology
  • Fossils*
  • Hardness
  • Humans
  • Microscopy, Electron, Scanning
  • Molar / anatomy & histology*
  • Molar / chemistry
  • Molar / ultrastructure