Designer emission spectra through tailored energy transfer in nanoparticle-doped silica preforms

Opt Lett. 2009 Aug 1;34(15):2339-41. doi: 10.1364/ol.34.002339.

Abstract

This Letter provides a qualitative proof of concept for purposefully tailoring the emission spectrum of glass by spatially localizing dissimilar dopants to control the degree of energy transfer. More specifically, modified-chemical-vapor-deposition-derived silica preforms were solution doped with either a solution of individually Eu(3+)- or Tb(3+)-doped nanoparticles or a solution of Eu(3+)/Tb(3+)-codoped nanoparticles. The preform prepared using the codoped nanoparticles exhibited energy transfer from the Tb(3+) to the Eu(3+) ions, whereas the preform containing individually doped nanoparticles yielded only discretely Tb(3+) or Eu(3+) emissions. The extension of this work to broadband amplifiers and lasers is discussed.