Historical accumulation rates of mercury in four Scottish ombrotrophic peat bogs over the past 2000 years

Sci Total Environ. 2009 Oct 15;407(21):5578-88. doi: 10.1016/j.scitotenv.2009.06.014. Epub 2009 Jul 30.

Abstract

The historical accumulation rates of mercury resulting from atmospheric deposition to four Scottish ombrotrophic peat bogs, Turclossie Moss (northeast Scotland), Flanders Moss (west-central), Red Moss of Balerno (east-central) and Carsegowan Moss (southwest), were determined via analysis of (210)Pb- and (14)C-dated cores up to 2000 years old. Average pre-industrial rates of mercury accumulation of 4.5 and 3.7 microg m(-2) y(-1) were obtained for Flanders Moss (A.D. 1-1800) and Red Moss of Balerno (A.D. 800-1800), respectively. Thereafter, mercury accumulation rates increased to typical maximum values of 51, 61, 77 and 85 microg m(-2) y(-1), recorded at different times possibly reflecting local/regional influences during the first 70 years of the 20th century, at the four sites (TM, FM, RM, CM), before declining to a mean value of 27+/-15 microg m(-2) y(-1) during the late 1990s/early 2000s. Comparison of such trends for mercury with those for lead and arsenic in the cores and also with direct data for the declining UK emissions of these three elements since 1970 suggested that a substantial proportion of the mercury deposited at these sites over the past few decades originated from outwith the UK, with contributions to wet and dry deposition arising from long-range transport of mercury released by sources such as combustion of coal. Confidence in the chronological reliability of these core-derived trends in absolute and relative accumulation of mercury, at least since the 19th century, was provided by the excellent agreement between the corresponding detailed and characteristic temporal trends in the (206)Pb/(207)Pb isotopic ratio of lead in the (210)Pb-dated Turclossie Moss core and those in archival Scottish Sphagnum moss samples of known date of collection. The possibility of some longer-term loss of volatile mercury released from diagenetically altered older peat cannot, however, be excluded by the findings of this study.

Publication types

  • Historical Article
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Radioisotopes
  • Environmental Monitoring
  • Environmental Pollutants / analysis*
  • Environmental Pollution / history*
  • Geologic Sediments / chemistry
  • Half-Life
  • History, 15th Century
  • History, 16th Century
  • History, 17th Century
  • History, 18th Century
  • History, 19th Century
  • History, 20th Century
  • History, 21st Century
  • History, Ancient
  • History, Medieval
  • Lead Radioisotopes
  • Mercury / analysis*
  • Radiometric Dating
  • Scotland
  • Soil
  • Wetlands*

Substances

  • Carbon Radioisotopes
  • Environmental Pollutants
  • Lead Radioisotopes
  • Soil
  • Mercury