Insulin mimetic effect of tungsten compounds on isolated rat adipocytes

Biol Trace Elem Res. 2010 Jun;134(3):296-306. doi: 10.1007/s12011-009-8474-y. Epub 2009 Jul 31.

Abstract

Investigations of effective, orally active, and safe antidiabetic metallopharmaceuticals have been carried out during the last two decades. It has been reported that tungsten compounds mimic the action of insulin in intact cell systems. As insulin mimetics, the most investigated tungsten compound was sodium tungstate (ST), rarely investigated was tungstophosphoric acid (WPA), but never alanine complex of tungstophosphoric acid (WPA-A). In this study, the insulin mimetic activity of three different tungsten compounds, ST, WPA, and WPA-A, was evaluated by means of in vitro measurements of the glucose uptake and inhibition of free fatty acids release from epinephrine-treated isolated rat white adipocytes. We investigated the influence of concentration (lower and higher, 0.1 and 1.0 mM, respectively) and solvent: isotonic salt solution-saline (0.9% w/v of NaCl) and dimethyl sulfoxide (DMSO; 2% v/v), on the biological effect of tested compounds. Our experimental data showed that all of the three investigated tungsten compounds possess insulin mimetic activity in vitro on the isolated adipocytes. Influence of concentration and solvents on insulin mimetic effect for the certain tungsten compounds were: WPA was shown effect independently of concentration and solvents; higher concentration and DMSO were significant decreasing insulin mimetic effect of ST; lower concentration and saline led to decreasing effect of WPA-A. Generally, there were no differences in insulin mimetic effect of three tungsten compounds in lower concentration and dissolved in DMSO. When saline was used as solvent, it was needed higher concentration of investigated compounds to accomplish the same effect. In conclusion, our results suggest that low concentration (0.1 mM) of ST, WPA, and WPA-A dissolved in 2% DMSO could be the good candidates for in vivo investigation of their antidiabetic properties.

MeSH terms

  • Adipocytes / drug effects*
  • Animals
  • Insulin / pharmacology*
  • Male
  • Molecular Mimicry*
  • Rats
  • Rats, Wistar
  • Tungsten Compounds / pharmacology*

Substances

  • Insulin
  • Tungsten Compounds