Surface-enhanced Raman spectroscopy: a direct method to identify colorants in various artist media

Anal Chem. 2009 Sep 1;81(17):7443-7. doi: 10.1021/ac901219m.

Abstract

Surface-enhanced Raman spectroscopy (SERS) has been developed as a direct, extractionless, nonhydrolysis tool to detect lake pigments and colorants of various classes used in a variety of artist materials. Presented first is the SERS analysis of the natural colorant turmeric (Curcuma longa L.), main component curcumin, as present in dry lake pigment grains, dyed textile yarns, and reference paint layers containing the lake pigment bound in animal glue painted on glass. This experiment demonstrated that it is possible to detect the chromophore in various matrixes of increasing complexity, allowing its unambiguous identification in a wide range of artists' materials, even at very low concentration and in the presence of binders such as glue. In addition, removal of the colorant from the complex with the inorganic substrate or mordanted yarn was not necessary for identification. This proof-of-concept study was then extended to include analysis of several pastel sticks from a historical pastel box and two samples from a pastel artwork, both attributed to American painter Mary Cassatt (1844-1926). This study represents the first extractionless, nonhydrolysis direct SERS study of multiple artist materials, including identification of natural and synthetic colorants and organic pigments contained in historic artists' pastels spanning a broad range of chemical classes: polyphenols, rhodamines, azo pigments, and anthraquinones. Successful identification is demonstrated on samples as small as a single grain of pigment.