In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications

ACS Nano. 2009 Aug 25;3(8):2177-84. doi: 10.1021/nn900432u.

Abstract

Development of materials and structures leading to lithium ion batteries with high energy and power density is a major requirement for catering to the power needs of present day electronic industry. Here, we report an in situ formation of a sandwiched structure involving single-walled carbon nanotube film, copper oxide, and copper during the direct synthesis of nanotube macrofilms over copper foils and their electrochemical performance in lithium ion batteries. The sandwiched structure showed a remarkably high reversible capacity of 220 mAh/g at a high cycling current of 18.6 A/g (50 C), leading to a significantly improved electrochemical performance which is extremely high compared to pure carbon nanotube and any other carbon based materials.