The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses

Biochem Biophys Res Commun. 2009 Oct 2;387(4):778-83. doi: 10.1016/j.bbrc.2009.07.113. Epub 2009 Jul 25.

Abstract

Trehalose and glycerol have been implicated as potential stress protectants that accumulate in yeasts during various stress conditions. We investigated the levels of glycerol and trehalose and the expression profiles of genes involved in their metabolism to determine their involvement in the response of Saccharomyces cerevisiae XQ1 to thermal, sorbitol and ethanol stresses. The results showed that the genes involved in the synthesis and degradation of trehalose and glycerol were stress induced, and that trehalose and glycerol were synthesized simultaneously during the initial stages (a sensitive response period) of diverse stress treatments. Trehalose accumulated markedly under heat treatment, but not under sorbitol or ethanol stress, whereas glycerol accumulated strikingly under sorbitol stress conditions. Interestingly, extracellular trehalose seemed to be involved in protecting cells from damage under unfavorable conditions. Moreover, our results suggest that the stress-activated futile ATP cycles of trehalose and glycerol turnover are of general importance during cellular stress adaptation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression Profiling
  • Glycerol / metabolism*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism*
  • Stress, Physiological* / genetics
  • Trehalose / genetics
  • Trehalose / metabolism*

Substances

  • Trehalose
  • Glycerol