Socially assistive robotics for stroke and mild TBI rehabilitation

Stud Health Technol Inform. 2009:145:249-62.

Abstract

This paper describes an interdisciplinary research project aimed at developing and evaluating effective and user-friendly non-contact robot-assisted therapy, aimed at in-home use. The approach stems from the emerging field of social cognitive neuroscience that seeks to understand phenomena in terms of interactions between the social, cognitive, and neural levels of analysis. This technology-assisted therapy is designed to be safe and affordable, and relies on novel human-robot interaction methods for accelerated recovery of upper-extremity function after lesion-induced hemiparesis. The work is based on the combined expertise in the science and technology of non-contact socially assistive robotics and the clinical science of neurorehabilitation and motor learning, brought together to study how to best enhance recovery after stroke and mild traumatic brain injury. Our approach is original and promising in that it combines several ingredients that individually have been shown to be important for learning and long-term efficacy in motor neurorehabilitation: (1) intensity of task specific training and (2) engagement and self-management of goal-directed actions. These principles motivate and guide the strategies used to develop novel user activity sensing and provide the rationale for development of socially assistive robotics therapy for monitoring and coaching users toward personalized and optimal rehabilitation programs.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Brain Injuries / rehabilitation*
  • Humans
  • Robotics / instrumentation*
  • Self-Help Devices
  • Stroke Rehabilitation*