Folate deficiency induces neural stem cell apoptosis by increasing homocysteine in vitro

J Clin Biochem Nutr. 2009 Jul;45(1):14-9. doi: 10.3164/jcbn.08-223. Epub 2009 Jun 30.

Abstract

Cellular events for neural progenitor cells, such as proliferation and differentiation, are regulated by multiple intrinsic and extrinsic cell signals. Folate plays a central role in central nervous system development, so folate, as an extrinsic signal, may affect neural stem cell (NSC) proliferation and differentiation. In the present study, we investigated the effects of folate deficiency on the cell proliferation, cell apoptosis and homocysteine concentrations in NSCs. NSCs were isolated from fetal rats and identified as NSCs by their expression of immunoreactive nestin. Cell proliferation was quantitated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptotic cells were detected and confirmed by flow cytometric analysis. We measured homocysteine concentrations in NSCs by high performance liquid chromatography and detected the expression of caspase-3 by western blot method. Folate deficiency not only decreased cell proliferation, but also increased the apoptotic rate of NSCs as demonstrated by the increased expression of early apoptotic markers such as caspase-3, compared to control group (p<0.05). Furthermore, There was a statistically significant increase in homocysteine concentration during folate deficiency in NSCs (p<0.05). These data suggest that folate affects the cell proliferation, apoptosis and homocysteine generation in NSC cells.

Keywords: apoptosis; folate; homocysteine; neural stem cells.