Elevated CO2 significantly delays reproductive development of soybean under Free-Air Concentration Enrichment (FACE)

J Exp Bot. 2009;60(10):2945-51. doi: 10.1093/jxb/erp170. Epub 2009 Jun 26.

Abstract

The effect of rising atmospheric concentration of carbon dioxide [CO(2)] on the reproductive development of soybean (Glycine max. Merr) has not been evaluated under open-air field conditions. Soybeans grown under Free-Air CO(2) Enrichment (FACE) exhibit warmer canopies due to decreased latent heat loss because of decreased stomatal conductance. According to development models based on accumulated thermal time, or growing degree days ( degrees Cd), increased canopy temperature should accelerate development. The SoyFACE research facility (Champaign, Illinois, USA) was used to test the hypothesis that development is accelerated in soybean when grown in [CO(2)] elevated to 548 micromol mol(-1). Canopy temperature was measured continuously with infrared thermometry, and used in turn to calculate GDD. Opposite to expectation, elevated [CO(2)], while increasing canopy temperature, delayed reproductive development by up to 3 days (P <0.05). Soybean grown in elevated [CO(2)] required approximately 49 degrees Cd more GDD (P <0.05) to complete full bloom stage (R2) and approximately 52 degrees Cd more GDD (P <0.05) to complete the beginning seed (R5) stage, but needed approximately 46 degrees Cd fewer GDD (P <0.05) to complete seed filling (R6). Soybeans grown in elevated [CO(2)] produced significantly more nodes (P <0.01) on the main stem than those grown under current [CO(2)]. This may explain the delay in completion of reproductive development and final maturation of the crop under elevated [CO(2)]. These results show a direct effect of rising [CO(2)] on plant development that will affect both projections of grain supply and may be significant to other species including those in natural communities.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air / analysis*
  • Biomass
  • Carbon Dioxide / metabolism*
  • Ecosystem
  • Glycine max / growth & development*
  • Glycine max / metabolism
  • Photosynthesis
  • Temperature

Substances

  • Carbon Dioxide