Quantification and organization of WIS2-1A and BARE-1 retrotransposons in different genomes of Triticum and Aegilops species

Mol Genet Genomics. 2009 Sep;282(3):245-55. doi: 10.1007/s00438-009-0462-6. Epub 2009 Jun 19.

Abstract

A real-time PCR approach was adopted and optimized to estimate and compare, through a relative quantification, the copy number of WIS2-1A and BARE-1 retrotransposons. The aim of this approach was to identify and quantify the presence of these retrotransposons in Triticum and Aegilops species, and to understand better the genome organization of these retroelements. The species were selected to assess and compare the evolution of the different types of genomes between the more recent species such as the diploid Triticum monococcum, tetraploid T. dicoccon and hexaploid T. spelta, and the corresponding genome donors of the ancient diploids Aegilops (Ae. speltoides, Ae. tauschii, Ae. sharonensis and Ae. bicornis) and T. urartu. The results of this study indicated the presence of great variation in copy number both within and among species, and the existence of a non-linear relationship between retrotransposon copy number and ploidy level. For WIS2-1A, as expected, T. monococcum showed the lowest copy number which instead was similar in T. dicoccon and T. spelta; also T. urartu (AA), Ae. speltoides (BB) and Ae. tauschii (DD) showed a higher WIS2-1A copy number. Similar results were observed for BARE-1 retroelements except for Ae. tauschii which as in T. monococcum showed lower retroelements content; a similar content for T. dicoccon and T. urartu, whereas a higher number was found in T. spelta and Ae. speltoides. The results presented here are in accord with previous studies and contribute to unravelling the structure and evolution of polyploidy and repetitive genomes.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Diploidy*
  • Evolution, Molecular*
  • Gene Amplification
  • Gene Expression Regulation, Plant
  • Genome, Plant*
  • Polymerase Chain Reaction / methods
  • Polyploidy*
  • Retroelements / genetics*
  • Sequence Analysis, DNA
  • Triticum / genetics*

Substances

  • Retroelements