Silicon Wafer-Based Platinum Microelectrode Array Biosensor for Near Real-Time Measurement of Glutamate in Vivo

Sensors (Basel). 2008;8(8):5023-5036. doi: 10.3390/s8085023.

Abstract

Using Micro-Electro-Mechanical-Systems (MEMS) technologies, we have developed silicon wafer-based platinum microelectrode arrays (MEAs) modified with glutamate oxidase (GluOx) for electroenzymatic detection of glutamate in vivo. These MEAs were designed to have optimal spatial resolution for in vivo recordings. Selective detection of glutamate in the presence of the electroactive interferents, dopamine and ascorbic acid, was attained by deposition of polypyrrole and Nafion. The sensors responded to glutamate with a limit of detection under 1muM and a sub-1-second response time in solution. In addition to extensive in vitro characterization, the utility of these MEA glutamate biosensors was also established in vivo. In the anesthetized rat, these MEA glutamate biosensors were used for detection of cortically-evoked glutamate release in the ventral striatum. The MEA biosensors also were applied to the detection of stress-induced glutamate release in the dorsal striatum of the freely-moving rat.