Dynamic compensation of chromatic aberration in a programmable diffractive lens

Opt Express. 2006 Oct 2;14(20):9103-12. doi: 10.1364/oe.14.009103.

Abstract

A proposal to dynamically compensate chromatic aberration of a programmable phase Fresnel lens displayed on a liquid crystal device and working under broadband illumination is presented. It is based on time multiplexing a set of lenses, designed with a common focal length for different wavelengths, and a tunable spectral filter that makes each sublens work almost monochromatically. Both the tunable filter and the sublens displayed by the spatial light modulator are synchronized. The whole set of sublenses are displayed within the integration time of the sensor. As a result the central order focalization has a unique location at the focal plane and it is common for all selected wavelengths. Transversal chromatic aberration of the polychromatic point spread function is reduced by properly adjusting the pupil size of each sublens. Longitudinal chromatic aberration is compensated by making depth of focus curves coincident for the selected wavelengths. Experimental results are in very good agreement with theory.