Understanding the adaptive growth strategy of Lactobacillus plantarum by in silico optimisation

PLoS Comput Biol. 2009 Jun;5(6):e1000410. doi: 10.1371/journal.pcbi.1000410. Epub 2009 Jun 12.

Abstract

In the study of metabolic networks, optimization techniques are often used to predict flux distributions, and hence, metabolic phenotype. Flux balance analysis in particular has been successful in predicting metabolic phenotypes. However, an inherent limitation of a stoichiometric approach such as flux balance analysis is that it can predict only flux distributions that result in maximal yields. Hence, previous attempts to use FBA to predict metabolic fluxes in Lactobacillus plantarum failed, as this lactic acid bacterium produces lactate, even under glucose-limited chemostat conditions, where FBA predicted mixed acid fermentation as an alternative pathway leading to a higher yield. In this study we tested, however, whether long-term adaptation on an unusual and poor carbon source (for this bacterium) would select for mutants with optimal biomass yields. We have therefore adapted Lactobacillus plantarum to grow well on glycerol as its main growth substrate. After prolonged serial dilutions, the growth yield and corresponding fluxes were compared to in silico predictions. Surprisingly, the organism still produced mainly lactate, which was corroborated by FBA to indeed be optimal. To understand these results, constraint-based elementary flux mode analysis was developed that predicted 3 out of 2669 possible flux modes to be optimal under the experimental conditions. These optimal pathways corresponded very closely to the experimentally observed fluxes and explained lactate formation as the result of competition for oxygen by the other flux modes. Hence, these results provide thorough understanding of adaptive evolution, allowing in silico predictions of the resulting flux states, provided that the selective growth conditions favor yield optimization as the winning strategy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Physiological
  • Algorithms
  • Bacterial Physiological Phenomena
  • Biomass
  • Computer Simulation*
  • Fermentation
  • Glycerol / metabolism
  • Lactic Acid / metabolism
  • Lactobacillus plantarum / growth & development*
  • Lactobacillus plantarum / metabolism*
  • Metabolic Networks and Pathways / physiology*
  • Models, Biological*

Substances

  • Lactic Acid
  • Glycerol