Microcrystalline hexagonal tungsten bronze. 2. Dehydration dynamics

Inorg Chem. 2009 Jul 6;48(13):5663-76. doi: 10.1021/ic801295c.

Abstract

Low-temperature (25-600 degrees C) thermal transformations have been studied for hydrothermally prepared, microcrystalline hexagonal tungsten bronze (HTB) phases A(x)WO(3+x/2).zH(2)O as a function of temperature, where A is an exchangeable cation (in this case Na(+) or Cs(+)) located in hexagonal structural tunnels. Thermal treatment of the as-prepared sodium- and cesium-exchanged phases in air were monitored using a conventional laboratory-based X-ray diffractometer, while thermal transformations in vacuum were studied using synchrotron X-ray and neutron diffraction. Concurrent thermogravimetric, diffuse reflectance infrared (DRIFT), and (23)Na and (133)Cs magic angle spinning (MAS) NMR spectroscopic studies have also been undertaken. For the cesium variant, cell volume contraction occurred from room temperature to about 350 degrees C, the regime in which water was "squeezed" out of tunnel sites. This was followed by a lattice expansion in the 350-600 degrees C temperature range. Over the entire temperature range, a net thermal contraction was observed, and this was the result of an anisotropic change in the cell dimensions which included a shortening of the A-O2 bond length. These changes explain why Cs(+) ions are locked into tunnel positions at temperatures as low as 400 degrees C, subsequently inducing a significant reduction in Cs(+) extractability under low pH (nitric acid) conditions. The changing Cs(+) speciation as detected by (133)Cs MAS NMR showed a condensation from multiple Cs sites, presumably associated with differing modes of Cs(+) hydration in the tunnels, to a single Cs(+) environment upon thermal transformation and water removal. While similar lattice contraction was observed for the as-prepared sodium variant, the smaller radius of Na(+) caused it to be relatively easily removed with acid in comparison to the Cs(+) variant. From (23)Na MAS NMR studies of the parent material, complex Na(+) speciation was observed with dehydrated and various hydrated Na(+) species being identified, and a subsequent dynamic interchange within this speciation was observed upon thermal treatment.