Comparative corrosion study of Ti-Ta alloys for dental applications

Acta Biomater. 2009 Nov;5(9):3625-39. doi: 10.1016/j.actbio.2009.05.037. Epub 2009 Jun 7.

Abstract

Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biocompatibility of metallic materials, and can produce undesirable reactions in implant-adjacent and/or more distant tissues. Titanium and some of its alloys are known as being the most biocompatible metallic materials due to their high strength, low modulus, high corrosion resistance in biological media, etc. More recently, Ti-Ta alloys have been developed, and these are expected to become more promising candidates for biomedical and dental applications than commercially pure Ti, Ti-6Al-4V or Ti-6Al-7Nb alloy. The corrosion behavior of the studied Ti-Ta alloys with Ta contents of 30, 40, 50 and 60 wt.% together with the currently used Ti-6Al-7Nb alloy were investigated for dental applications. All alloys were tested by open-circuit potential measurement, linear polarization, potentiodynamic polarization, coulometric zone analysis and electrochemical impedance spectroscopy performed in artificial saliva with different pH, acid lactic and fluoride contents. The passive behavior for all the titanium alloys is observed for artificial saliva, acidified saliva (9.8 gl(-1) lactic acid, pH 2.5) and for fluoridated saliva (1.0 gl(-1) F(-), pH 8). A decrease in corrosion resistance and less protective passive oxide films are observed for all titanium alloys in fluoridated acidified saliva (9.8 gl(-1) lactic acid, 1.0 gl(-1) F(-), pH 2.5) in regard to other electrochemical media used within this work. It is worthy of note that the most important decrease was found for Ti-6Al-7Nb alloy. These conclusions are confirmed by all the electrochemical tests undertaken. However, the results confirm that the corrosion resistance of the studied Ti-Ta alloys in all saliva is better or similar to that of Ti-6Al-7Nb alloy, suggesting that the Ti-Ta alloys have potential for dental applications.

Publication types

  • Evaluation Study

MeSH terms

  • Alloys
  • Biocompatible Materials / chemistry
  • Corrosion
  • Dental Alloys / chemistry*
  • Electrochemical Techniques
  • Fluorides / chemistry
  • Humans
  • Materials Testing
  • Microscopy, Electron, Scanning
  • Saliva, Artificial / chemistry
  • Spectrum Analysis / methods
  • Titanium / chemistry*
  • X-Ray Diffraction

Substances

  • Alloys
  • Biocompatible Materials
  • Dental Alloys
  • Saliva, Artificial
  • Ti-6Al-7Nb alloy
  • titanium alloy (TiAl6V4)
  • Titanium
  • Fluorides