The effect of structural variation in 21 microcystins on their inhibition of PP2A and the effect of replacing cys269 with glycine

Toxicon. 2009 Sep 15;54(4):539-44. doi: 10.1016/j.toxicon.2009.05.028. Epub 2009 Jun 6.

Abstract

Microcystins (MCs) are a group of cyclic heptapeptide hepatotoxins produced by Microcystis and several other genera of cyanobacteria. The representative MC, MC-LR, strongly inhibits protein phosphatase 2A (PP2A), while the inhibitory potencies of at least 60MC analogs characterized from bloom samples and cultured strains have not been fully elucidated. In this study, we determined the IC(50) values for 21MC analogs for inhibiting the recombinant PP2A catalytic subunit (rPP2Ac). Of the 21MC analogs, MC-LR was the strongest inhibitor of rPP2Ac. Comparison of the IC(50) values indicates that demethylation of the amino acids at positions 3 or 7 leads to a greater reduction in activity than the substitution of l-amino acids at positions 2 and 4. To obtain further insight into the MC-PP2A interaction, we substituted cysteine at position 269 in PP2Ac with glycine. The mutant PP2Ac (C269G) was comparable to the wild-type PP2Ac in the hydrolysis of p-NPP, but was more resistant to MCs as indicated by the greater IC(50) values. Our results indicate that cys269 in PP2Ac and N-methyldehydroalanine (Mdha) at position 7 in MCs play important roles in the enzyme-inhibitor interaction. We also determined the LC(50) values of the MCs for cytotoxicity assay. Our results indicate that there is a weak correlation between the cytotoxicity and PP2A inhibiting activities of the MCs. The MCs and rPP2Ac used in this study were of high purity and the IC(50) values were determined under the same experimental conditions, ensuring the quality of the data. The IC(50) values are of practical importance because they enable the precise conversion of the amounts of various MCs detected using instrumental methods to MC-LR equivalents.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Cells, Cultured
  • Cysteine / chemistry*
  • Glycine / chemistry*
  • Humans
  • Microcystins / chemistry*
  • Microcystins / pharmacology
  • Molecular Sequence Data
  • Protein Phosphatase 2 / antagonists & inhibitors*
  • Toxicity Tests

Substances

  • Microcystins
  • Protein Phosphatase 2
  • Cysteine
  • Glycine