High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor

Opt Express. 2005 Aug 22;13(17):6416-28. doi: 10.1364/opex.13.006416.

Abstract

This paper describes the design and the performance of a new high-speed laser Doppler imaging system for monitoring blood flow over an area of tissue. The new imager delivers high-resolution flow images (256x256 pixels) every 2 to 10 seconds, depending on the number of points in the acquired time-domain signal (32-512 points). This new imaging modality utilizes a digital integrating CMOS image sensor to detect Doppler signals in a plurality of points over the area illuminated by a divergent laser beam of a uniform intensity profile. The integrating property of the detector improves the signal-to-noise ratio of the measurements, which results in high-quality flow images. We made a series of measurements in vitro to test the performance of the system in terms of bandwidth, SNR, etc. Subsequently we give some examples of flow-related images measured on human skin, thus demonstrating the performance of the imager in vivo. The perspectives for future implementations of the imager for clinical and physiological applications are discussed.