Performance assessment of the GenoType MTBDRplus test and DNA sequencing in detection of multidrug-resistant Mycobacterium tuberculosis

J Clin Microbiol. 2009 Aug;47(8):2520-4. doi: 10.1128/JCM.02499-08. Epub 2009 Jun 3.

Abstract

To facilitate the management of multidrug-resistant (MDR) tuberculosis, two nucleic acid sequence-based methods, the GenoType MTBDRplus test and DNA sequencing, were assessed for the rapid detection of drug-resistant Mycobacterium tuberculosis for the first time in the Asia-Pacific region. The performances of these two assays in detecting the presence of rifampin (rifampicin) (RIF) and isoniazid (INH) resistance-associated mutations in the rpoB, katG, inhA regulatory region, inhA, and oxyR-ahpC genes were compared to that of a conventional agar proportion drug susceptibility test. A total of 242 MDR and 30 pansusceptible M. tuberculosis isolates were evaluated in this study. The sensitivities obtained for RIF-resistant detection by the GenoType MTBDRplus test and by resistance gene sequencing were 95.5% and 97.9%, respectively. The sensitivities for INH resistance detection by the GenoType MTBDRplus test and by resistance gene sequencing were 81.8% and 93.4%, respectively. Together, the sensitivity for MDR tuberculosis detection was 78.5% with the GenoType MTBDRplus test and 91.3% by resistance gene sequencing. The specificity for RIF resistance, INH resistance, and MDR detection was 100% by both methods. The GenoType MTBDRplus test has the advantage of a short turnaround time for drug-resistant M. tuberculosis detection. Overall, the two assays performed equally well in detecting RIF resistance (P = 0.13). However, DNA sequencing demonstrated superior performance in detecting INH resistance (P < 0.001) and MDR tuberculosis (P < 0.001). We suggest that new alleles of INH resistance genes should be evaluated to improve the sensitivity of the GenoType MTBDRplus test, especially for different geographic areas with genetically diverse M. tuberculosis strains.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Asia
  • Bacterial Proteins / genetics
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • Drug Resistance, Multiple, Bacterial*
  • Genotype
  • Humans
  • Microbial Sensitivity Tests / methods*
  • Molecular Diagnostic Techniques / methods*
  • Mutation, Missense
  • Mycobacterium tuberculosis / drug effects*
  • Mycobacterium tuberculosis / genetics*
  • Mycobacterium tuberculosis / isolation & purification
  • Sensitivity and Specificity
  • Sequence Analysis, DNA / methods*
  • Tuberculosis, Multidrug-Resistant / microbiology*

Substances

  • Bacterial Proteins
  • DNA, Bacterial