Low-voltage planar-waveguide electrooptic prism scanner in Crystal-Ion-Sliced thin-film LiNbO3

Opt Express. 2004 Dec 13;12(25):6159-64. doi: 10.1364/opex.12.006159.

Abstract

We report on the use of thin, i.e. 10 microm-thick, single-crystal LiNbO3, in low-voltage electrooptic prism scanners. These devices are fabricated by electric-field poling of a series of electrooptic prisms in a bulk crystal followed by high-energy ion implantation and subsequent etching of the poled samples. Such a single-crystal thin-film scanner, while having the same scanning functionality as with a bulk device, has an order-of-magnitude reduction in its required voltage; for example, a series of two prisms, of 2mm in total length, yields a deflection angle of 0.7 at 100V compared to more than 1.7kV for the same device in standard 200 microm-thick LiNbO3 wafers.