Evaluation of dental composite shrinkage and leakage in extracted teeth using X-ray microcomputed tomography

Dent Mater. 2009 Oct;25(10):1213-20. doi: 10.1016/j.dental.2009.04.007. Epub 2009 May 28.

Abstract

Objective: Use X-ray microcomputed tomography (microCT), to test the hypothesis that composite shrinkage and sites of potential leakage in human teeth are non-uniformly distributed and depend on cavity geometry and C-factor.

Methods: Two holes of equal volume but different dimensions were drilled into the exposed dentin of extracted human molars. The cavities were filled with composite and teeth were scanned, before and after curing, using microCT. Three-dimensional (3D) reconstructions of the data were prepared and analyzed using image analysis software.

Results: 3D reconstructions showed that cavity geometry did not affect the polymerization shrinkage. The shrinkage for all restorations was 2.66+/-0.59%, and cavity dimensions did not affect the volume lost, either in quantity or location on the sample. Potential leakage sites were identified by gap formations and found to be non-uniformly distributed along the tooth-composite interface. Leakage in regions calculated by microCT was confirmed by visualization of sectioned samples with confocal laser scanning microscopy.

Significance: microCT evaluation will add tremendous value as part of a suite of tests to characterize various properties of dental materials. The non-uniform distribution of potential leakage sites about the cavities that was determined by microCT emphasizes the inadequacy of traditional methods of determining leakage, which are capable of analyzing only limited areas. Additionally, microCT evaluation can produce quantitative analyses of shrinkage and leakage, compared to the conventional methods, which are qualitative or semi-quantitative. Finally, experimentally determined shrinkage and leakage of composite in extracted teeth agrees with the results of similar experiments in model cavities, confirming the validity of those models.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Composite Resins / chemistry*
  • Dental Bonding*
  • Dental Cavity Preparation / methods
  • Dental Leakage / classification*
  • Dental Materials / chemistry*
  • Dental Restoration, Permanent / methods
  • Dentin / ultrastructure*
  • Humans
  • Image Processing, Computer-Assisted
  • Imaging, Three-Dimensional
  • Materials Testing
  • Microscopy, Confocal
  • Polymers / chemistry
  • Surface Properties
  • X-Ray Microtomography*

Substances

  • Composite Resins
  • Dental Materials
  • Polymers
  • TPH hybrid