Synthesis and properties of salen-aluminum complexes as a novel class of color-tunable luminophores

Chemistry. 2009 Jun 22;15(26):6478-87. doi: 10.1002/chem.200900137.

Abstract

Showing their true colors? Full emission color tuning in the visible region can be achieved with salen-aluminum complexes that are electronically modulated at C5 of the phenoxide ring in the salen moiety. Emission spectra for various substituents R(5) are shown (EWG: electron-withdrawing group, EDG: electron-donating group).A series of salen-aluminum complexes, [{(R(5))(2)-salen(3-tBu)(2)}Al(OC(6)H(4)-p-C(6)H(5))] (salen=N,N'-bis(salicylidene)ethylenediamine; R(5)=H (1), tBu (2), Br (3), Ph (4), OMe (5), NMe(2) (6)) and [{5,5'-(NMe(3))(2)-salen(3-tBu)(2)}Al(OC(6)H(4)-p-C(6)H(5))][OTf](2) (7; OTf=CF(3)SO(3)) that are electronically modulated directly at C5 of the phenoxide ring in the salen moiety has been prepared. The crystal structures of 1, 4, 6, and 7 determined by X-ray diffraction reveal distorted square-pyramidal geometries around the Al atoms. Complexes 1-7 are all air-stable in both the solid and solution states and have high thermal stability (decomp 313-338 degrees C). Differential scanning calorimetric analyses show that they can form amorphous glasses with glass transition temperatures of 95-132 degrees C depending on the C5 substituent. UV/Vis absorption spectra of the complexes exhibit major bands at lambda=338-413 nm assignable to salen-centered pi-pi* transitions with a gradual red shift of the absorption maximum wavelengths as the substituent is varied from an electron-withdrawing (NMe(3)) to an electron-donating group (NMe(2)). The maxima in the emission spectra of 1-7 occur over the entire visible region, ranging from lambda=438 nm for 7 to lambda=599 nm for 6, with high fluorescence quantum efficiencies of up to Phi=0.40 for 4 in solution. DFT calculations suggest that the low-energy electronic transitions in 1-7 are characterized by HOMO(-i)-LUMO(+1) (i=1 for 1-6 or i=4 for 7) transitions localized on the salen moiety, with much involvement of the C5 position in the HOMO(-i). Thus, the electronic alteration at the C5 position of the phenoxide ring, which mainly affects the HOMO(-i) energy levels of salen-Al luminophores, is responsible for the observed emission color-tuning properties over the entire visible region.