Using the NAFX to measure the effectiveness over time of gene therapy in canine LCA

Invest Ophthalmol Vis Sci. 2009 Oct;50(10):4685-92. doi: 10.1167/iovs.09-3387. Epub 2009 May 20.

Abstract

Purpose: To use ocular motility recordings to determine the changes over time of infantile nystagmus syndrome (INS) in RPE65-deficient canines with Leber Congenital Amaurosis (LCA) and assess the time course of the recalibration of the ocular motor system (OMS).

Methods: Nine dogs were treated bilaterally with AAV-RPE65. A second cohort of four dogs was treated with AAV2.RPE65, an optimized vector. Their fixation eye movements were recorded before treatment and at 4-week intervals for 3 months, by using high-speed (500 Hz) digital videography. The dogs were suspended in a sling and encouraged to fixate on distant (57 inches) targets at gaze angles varying between +/-15 degrees horizontally and +/-10 degrees vertically. The records for each eye were examined for qualitative changes in waveform and for quantitative changes in centralisation with the expanded nystagmus acuity function (NAFX) and compared with ERG results for restoration of receptor function.

Results: First group: Before treatment, five of the dogs had clinically apparent INS with jerk, pendular, or both waveforms and with peak-to-peak amplitudes as great as 15 degrees . One dog had intermittent nystagmus. At the 1- and 2-month examinations, no change in nystagmus waveform or NAFX was observed in any of the initial dogs, while at 10 weeks, one dog treated bilaterally with the standard dosage showed reduced nystagmus in only one eye. The other eye did not respond to treatment, as confirmed by ERG. This result was unexpected since it was previously documented that unilateral treatment leads to bilateral reduction of INS. The other dog treated with the standard dosage showed no reduction of its small-amplitude, high-frequency pendular nystagmus despite positive ERG responses. Second group: Only one dog of the four had clinically detectable INS, similar in characteristics to that seen in the affected dogs of the first group. Unlike any previous dog studied, this one showed a damping of the nystagmus within the first 4 weeks after treatment.

Conclusions: In all but one of the cases in which OMS recalibration occurred, as measured by the clinical appearance of nystagmus and by quantitative measurement using the NAFX, the improvement was apparent no sooner than 10 weeks after treatment. Longer term, dose-related studies are needed to determine the minimum necessary degree of restored receptor functionality, the duration after rescue for recalibration of the OMS, and the conditions under which recalibration information can successfully affect the contralateral eye.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blindness / physiopathology
  • Blindness / therapy
  • Blindness / veterinary*
  • Carrier Proteins / genetics*
  • Dependovirus / genetics*
  • Dog Diseases / physiopathology
  • Dog Diseases / therapy*
  • Dogs
  • Electroretinography
  • Eye Movements / physiology
  • Eye Proteins / genetics*
  • Genetic Therapy*
  • Genetic Vectors
  • Nystagmus, Congenital / physiopathology
  • Nystagmus, Congenital / therapy
  • Nystagmus, Congenital / veterinary*
  • Retinal Degeneration / physiopathology
  • Retinal Degeneration / therapy
  • Retinal Degeneration / veterinary*
  • Time Factors
  • Treatment Outcome
  • cis-trans-Isomerases

Substances

  • Carrier Proteins
  • Eye Proteins
  • retinoid isomerohydrolase
  • cis-trans-Isomerases