Normal protein composition of synapses in Ts65Dn mice: a mouse model of Down syndrome

J Neurochem. 2009 Jul;110(1):157-69. doi: 10.1111/j.1471-4159.2009.06110.x. Epub 2009 Apr 22.

Abstract

Down syndrome (DS) is the most prevalent form of intellectual disability caused by the triplication of approximately 230 genes on chromosome 21. Recent data in Ts65Dn mice, the foremost mouse model of DS, strongly suggest that cognitive impairment in individuals with DS is a consequence of reduced synaptic plasticity because of chronic over-inhibition. It remains unclear however whether changes in plasticity are tied to global molecular changes at synapses, or are due to regional changes in the functional properties of synaptic circuits. One interesting framework for evaluating the activity state of the DS brain comes from in vitro studies showing that chronic pharmacological silencing of neuronal excitability orchestrates stereotyped changes in the protein composition of synaptic junctions. In the present study, we use proteomic strategies to evaluate whether synapses from the Ts65Dn cerebrum carry signatures characteristic of inactive cortical neurons. Our data reveal that synaptic junctions do not exhibit overt alterations in protein composition. Only modest changes in the levels of synaptic proteins and in their phosphorylation are observed. This suggests that subtle changes in the functional properties of specific synaptic circuits rather than large-scale homeostatic shifts in the expression of synaptic molecules contribute to cognitive impairment in people with DS.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomarkers / analysis
  • Biomarkers / metabolism
  • Cerebral Cortex / metabolism*
  • Cerebral Cortex / pathology
  • Cerebral Cortex / physiopathology
  • Cognition Disorders / genetics
  • Cognition Disorders / metabolism*
  • Cognition Disorders / physiopathology
  • Disease Models, Animal
  • Down Syndrome / genetics
  • Down Syndrome / metabolism*
  • Down Syndrome / physiopathology
  • Female
  • Homeostasis / genetics
  • Male
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Mice
  • Mice, Neurologic Mutants
  • Nerve Tissue Proteins / genetics
  • Nerve Tissue Proteins / metabolism*
  • Neuronal Plasticity / genetics
  • Phosphorylation
  • Proteomics / methods
  • Synapses / chemistry
  • Synapses / genetics
  • Synapses / metabolism*
  • Synaptic Membranes / genetics
  • Synaptic Membranes / metabolism
  • Synaptic Membranes / pathology
  • Synaptic Transmission / genetics*

Substances

  • Biomarkers
  • Membrane Proteins
  • Nerve Tissue Proteins