Influence of pH on the structure of multilayer films composed of strong and weak polyelectrolytes

Langmuir. 2009 Mar 3;25(5):3255-9. doi: 10.1021/la803988k.

Abstract

The sequential adsorption of oppositely charged polyelectrolytes called the "layer by layer" technique is a method for formation of ultrathin films with controlled thickness and interfacial properties. Composition of polyelectrolyte solutions, pH, and electrolyte concentration are important parameters governing formation of multilayer films. Since pH is the factor controlling charge of weak polyelectrolytes, the structure of multilayers should be sensitive to its value. In this paper we focused on formation of PE multilayer films composed from weak and strong polyelectrolytes. We used weak, branched polycation polyethyleneimine (PEI, 70 kDa) and strong polyanion poly-4-styrenesulfonate (PSS, 70 kDa) to form films by the layer-by-layer technique on the surface of silicon wafers under two deposition conditions: pH = 6 when PEI was strongly charged and pH = 10.5 when the charge density of PEI was low. Thicknesses of films were measured by single wavelength ellipsometry, and the results were confronted with ones concerning mass of the adsorbed films obtained by quartz crystal microbalance. We found that, depending on pH of the solutions, combination of weakly and strongly charged polyelectrolytes gave either linear or nonmonotonic increase of film thickness with a number of deposited PE layers. We observed a good correlation between multilayer film thickness and adsorbed mass. The atomic force microscopy images of surface topography of PEI/PSS films demonstrated large differences between films deposited at pH = 6 and 10.5. Additionally the cyclic voltamperometry was used to determine the differences in permeability of films formed at various pH conditions.