Room temperature synthesis of K2Mo3O10x3H2O nanowires in minutes

Nanotechnology. 2009 May 27;20(21):215603. doi: 10.1088/0957-4484/20/21/215603. Epub 2009 May 6.

Abstract

Polyoxometalates have been widely used in the fields of catalysis, analytical chemistry, biochemistry, medicine and synthesis of novel organic-inorganic materials. It is difficult to synthesize pure polymolybdate products from a solution because several kinds of molybdenum-based anions may coexist. As a result, varied acidification methods are commonly used for solution synthesis of polymolybdates. In this paper we report an approach for the synthesis of [001]-oriented K(2)Mo(3)O(10)x3H(2)O nanowires from an aqueous solution of (NH(4))(6)Mo(7)O(24)x4H(2)O and KCl at low temperatures. The reaction occurs even at temperatures as low as 0 degrees C, and at 30-90 degrees C the whole procedure needs only a few minutes. Without any additional acidification treatments, the pH value of the solution is maintained in a narrow range of +/- 0.1 between 4.9 and 5.5 during the whole synthesis procedure. The starting pH depends on the reaction temperature. Crystalline structure and purity of the final products have been characterized with x-ray diffraction, electron diffraction and dehydration measurements. This simple and rapid method provides a unique case for studying the growth mechanism of polymolybdate nanostructures, and has a promising potential in the mass production of low-cost, pure-phase polymolybdates for a variety of applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallization / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Metals / chemistry*
  • Molecular Conformation
  • Nanotechnology / methods*
  • Nanotubes / chemistry*
  • Nanotubes / ultrastructure*
  • Particle Size
  • Polymers / chemistry*
  • Surface Properties
  • Temperature

Substances

  • Macromolecular Substances
  • Metals
  • Polymers