Facilitated diffusion with DNA coiling

Proc Natl Acad Sci U S A. 2009 May 19;106(20):8204-8. doi: 10.1073/pnas.0903293106. Epub 2009 May 6.

Abstract

When DNA-binding proteins search for their specific binding site on a DNA molecule they alternate between linear 1-dimensional diffusion along the DNA molecule, mediated by nonspecific binding, and 3-dimensional volume excursion events between successive dissociation from and rebinding to DNA. If the DNA molecule is kept in a straight configuration, for instance, by optical tweezers, these 3-dimensional excursions may be divided into long volume excursions and short hops along the DNA. These short hops correspond to immediate rebindings after dissociation such that a rebinding event to the DNA occurs at a site that is close to the site of the preceding dissociation. When the DNA molecule is allowed to coil up, immediate rebinding may also lead to so-called intersegmental jumps, i.e., immediate rebindings to a DNA segment that is far away from the unbinding site when measured in the chemical distance along the DNA, but close by in the embedding 3-dimensional space. This effect is made possible by DNA looping. The significance of intersegmental jumps was recently demonstrated in a single DNA optical tweezers setup. Here we present a theoretical approach in which we explicitly take the effect of DNA coiling into account. By including the spatial correlations of the short hops we demonstrate how the facilitated diffusion model can be extended to account for intersegmental jumping at varying DNA densities. It is also shown that our approach provides a quantitative interpretation of the experimentally measured enhancement of the target location by DNA-binding proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA / chemistry*
  • DNA-Binding Proteins / metabolism*
  • Diffusion*
  • Models, Molecular*
  • Nucleic Acid Conformation
  • Protein Binding

Substances

  • DNA-Binding Proteins
  • DNA