Production of lightweight aggregates from mining and industrial wastes

J Environ Manage. 2009 Jun;90(8):2801-12. doi: 10.1016/j.jenvman.2009.03.009. Epub 2009 Apr 21.

Abstract

Washing aggregate sludge from a gravel pit, sewage sludge from a wastewater treatment plant (WWTP) and a clay-rich sediment have been physically, chemically and mineralogically characterized. They were mixed, milled and formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150 degrees C, 1175 degrees C, 1200 degrees C and 1225 degrees C for 10 and 15 min at each temperature. The effects of the raw material characteristics, heating temperatures and dwell times on the loss on ignition (LOI), bloating index (BI), bulk density (rho(b)), apparent and dry particle densities (rho(a), rho(d)), voids (H), water absorption (WA(24h)) and compressive strength (S) were determined. All the mixtures presented a bloating potential taking into consideration the gases released at high temperatures. The products obtained were lightweight aggregates (LWAs) in accordance with Standard UNE-EN-13055-1 (rho(b)<or=1.20 g/cm(3) or particle density<or=2.00 g/cm(3)). LWAs manufactured with 50% washing aggregate sludge and 50% clay-rich sediment were expanded LWAs (BI>0) and showed the lowest apparent particle density, the lowest water absorption and the highest compressive strength. It was possible to establish three groups of LWAs on the basis of their properties in comparison to Arlita G3, F3 and F5, commercially available lightweight aggregates manufactured in Spain. Our LWAs may have the same or similar applications as these commercial products, such as horticulture, prefabricated lightweight structures and building structures.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Industrial Waste / analysis*
  • Mining*
  • Sewage / analysis*

Substances

  • Industrial Waste
  • Sewage