Nucleotide analogs and molecular modeling studies reveal key interactions involved in substrate recognition by the yeast RNA triphosphatase

Nucleic Acids Res. 2009 Jun;37(11):3714-22. doi: 10.1093/nar/gkp227. Epub 2009 Apr 16.

Abstract

RNA triphosphatases (RTPases) are involved in the addition of the distinctive cap structure found at the 5' ends of eukaryotic mRNAs. Fungi, protozoa and some DNA viruses possess an RTPase that belongs to the triphosphate tunnel metalloenzyme family of enzymes that can also hydrolyze nucleoside triphosphates. Previous crystallization studies revealed that the phosphohydrolase catalytic core is located in a hydrophilic tunnel composed of antiparallel beta-strands. However, all past efforts to obtain structural information on the interaction between RTPases and their substrates were unsuccessful. In the present study, we used computational molecular docking to model the binding of a nucleotide substrate into the yeast RTPase active site. In order to confirm the docking model and to gain additional insights into the molecular determinants involved in substrate recognition, we also evaluated both the phosphohydrolysis and the inhibitory potential of an important number of nucleotide analogs. Our study highlights the importance of specific amino acids for the binding of the sugar, base and triphosphate moieties of the nucleotide substrate, and reveals both the structural flexibility and complexity of the active site. These data illustrate the functional features required for the interaction of an RTPase with a ligand and pave the way to the use of nucleotide analogs as potential inhibitors of RTPases of pathogenic importance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acid Anhydride Hydrolases / chemistry*
  • Acid Anhydride Hydrolases / metabolism
  • Catalytic Domain
  • Guanosine Triphosphate / analogs & derivatives
  • Guanosine Triphosphate / chemistry*
  • Models, Molecular*
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae Proteins / chemistry*
  • Saccharomyces cerevisiae Proteins / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • Guanosine Triphosphate
  • Acid Anhydride Hydrolases
  • RNA triphosphatase