Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex

Science. 2009 Apr 3;324(5923):74-7. doi: 10.1126/science.1168600.

Abstract

Discovery of an efficient artificial catalyst for the sunlight-driven splitting of water into dioxygen and dihydrogen is a major goal of renewable energy research. We describe a solution-phase reaction scheme that leads to the stoichiometric liberation of dihydrogen and dioxygen in consecutive thermal- and light-driven steps mediated by mononuclear, well-defined ruthenium complexes. The initial reaction of water at 25 degrees C with a dearomatized ruthenium (II) [Ru(II)] pincer complex yields a monomeric aromatic Ru(II) hydrido-hydroxo complex that, on further reaction with water at 100 degrees C, releases H2 and forms a cis dihydroxo complex. Irradiation of this complex in the 320-to-420-nanometer range liberates oxygen and regenerates the starting hydrido-hydroxo Ru(II) complex, probably by elimination of hydrogen peroxide, which rapidly disproportionates. Isotopic labeling experiments with H2 17O and H2 18O show unequivocally that the process of oxygen-oxygen bond formation is intramolecular, establishing a previously elusive fundamental step toward dioxygen-generating homogeneous catalysis.

Publication types

  • Research Support, Non-U.S. Gov't