Electroluminescence from ZnO/Si-nanotips light-emitting diodes

Nano Lett. 2009 May;9(5):1839-43. doi: 10.1021/nl803804a.

Abstract

A new and general approach to achieving efficient electrically driven light emission from a Si-based nano p-n junction array is introduced. A wafer-scale array of p-type silicon nanotips were formed by a single-step self-masked dry etching process, which is compatible with current semiconductor technologies. On top of the silicon nanotip array, a layer of n-type ZnO film was grown by pulsed laser deposition. Both the narrow line width of 10 nm in cathodoluminescence spectra and the appearance of multiphonon Raman spectra up to the fourth order indicate the excellent quality of the ZnO film. The turn-on voltage of our ZnO/Si nanotip array is found to be approximately 2.4 V, which is 2 times smaller than its thin film counterpart. Moreover, electroluminescence (EL) from our ZnO/Si nanotips array light-emitting diode (LED) has been demonstrated. Our results could open up new possibilities to integrate silicon-based optoelectronic devices, such as highly efficient LEDs, with standard Si ultralarge-scale integrated technology.

Publication types

  • Research Support, Non-U.S. Gov't