Elevated polyamines induce c-MYC overexpression by perturbing quadruplex-WC duplex equilibrium

Nucleic Acids Res. 2009 Jun;37(10):3321-31. doi: 10.1093/nar/gkp196. Epub 2009 Mar 26.

Abstract

The biological role of quadruplexes and polyamines has been independently associated with cancer. However, quadruplex-polyamine mediated transcriptional regulation remain unaddressed. Herein, using c-MYC quadruplex model, we have attempted to understand quadruplex-polyamine interaction and its role in transcriptional regulation. We initially employed biophysical approach involving CD, UV and FRET to understand the role of polyamines (spermidine and spermine) on conformation, stability, molecular recognition of quadruplex and to investigate the effect of polyamines on quadruplex-Watson Crick duplex transition. Our study demonstrates that polyamines affect the c-MYC quadruplex conformation, perturb its recognition properties and delays duplex formation. The relative free energy difference (DeltaDeltaG degrees) between the duplex and quadruplex structure indicate that polyamines stabilize and favor c-MYC quadruplex over duplex. Further, we investigated the influence of polyamine mediated perturbation of this equilibrium on c-MYC expression. Our results suggest that polyamines induce structural transition of c-MYC quadruplex to a transcriptionally active motif with distinctive molecular recognition property, which drives c-MYC expression. These findings may allow exploiting quadruplex-polyamines interaction for developing antiproliferative strategies to combat aberrant gene expression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Circular Dichroism
  • Fluorescence Resonance Energy Transfer
  • G-Quadruplexes* / drug effects
  • Genes, myc*
  • HeLa Cells
  • Humans
  • Nucleic Acid Denaturation
  • Promoter Regions, Genetic
  • Proto-Oncogene Proteins c-myc / genetics*
  • Spermidine / pharmacology*
  • Spermine / pharmacology*
  • Thermodynamics

Substances

  • Proto-Oncogene Proteins c-myc
  • Spermine
  • Spermidine