Grass strip corridors in agricultural landscapes enhance nest-site colonization by solitary wasps

Ecol Appl. 2009 Jan;19(1):123-32. doi: 10.1890/08-0384.1.

Abstract

Corridors that connect otherwise isolated habitats have often been proposed as a management strategy to mitigate negative effects of habitat fragmentation. Non-crop corridors may have the potential to enhance the connectivity for arthropod predators in cropland landscapes, especially for species that require multiple habitats, such as cavity-nesting wasps which use wooded habitat for nesting and grassland habitat for foraging. However, the effects of corridors in nonexperimental landscapes have been rarely examined. We studied the species richness and abundance of cavity-nesting wasps and their parasitoids in standardized trap nests located in three habitat types (forest edge, hedge, grass strip) and in three grass-strip types (connected to a forest edge, slightly isolated, highly isolated from a forest edge). Species richness and the abundance of wasps (Hymenoptera: Sphecidae, Eumenidae, Pompilidae) were highest at forest edges, which provide natural nesting sites, and lowest in grass strips, with few natural nesting sites. Wasp abundance in grass strips connected to forest edges was 270% higher than in slightly isolated grass strips and 600% higher than in highly isolated grass strips. The abundance of caterpillar-hunting eumenid wasps was 600% higher in connected grass strips than in slightly and highly isolated grass strips. Species richness of wasps was enhanced by 180% in connected grass strips compared to highly isolated grass strips. Parasitism rates were not directly influenced by habitat or grass-strip type, but increased with increasing parasitoid diversity that was higher at forest edges than in grass strips. We conclude that grass-strip corridors enhance the colonization of nesting sites, presumably by facilitating wasp movements. In agricultural landscapes, where nesting sites are limited and food availability changes frequently, rapid colonization of nests may enhance population viability. Higher wasp abundance in connected nesting sites may be directly linked to higher biocontrol of pest caterpillars within the foraging range around nests. Although grass strips can reduce the negative effects of habitat fragmentation, non-crop habitats such as forest habitats and hedges providing nesting sites are required within the home range of wasps to allow reproduction in agricultural landscapes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Agriculture / methods*
  • Animals
  • Ecosystem
  • Host-Parasite Interactions
  • Nesting Behavior / physiology*
  • Pest Control, Biological
  • Poaceae*
  • Predatory Behavior
  • Trees
  • Wasps / parasitology
  • Wasps / physiology*