Synthesis and micellar self-assembly of ternary hydrophilic-lipophilic-fluorophilic block copolymers with a linear PEO chain

Langmuir. 2009 Jul 7;25(13):7594-601. doi: 10.1021/la900253j.

Abstract

Linear amphiphilic diblock and ternary triblock copolymers were synthesized by the RAFT method in two successive steps using a poly(ethylene oxide) (PEO) macrochain transfer agent, butyl or 2-ethylhexyl acrylate, and 1H,1H,2H,2H-perfluorodecyl acrylate. The diblock and the triblock copolymers, which consist of a hydrophilic, a lipophilic, and a short fluorophilic block, self-assemble in water into spherical micellar aggregates. Imaging by cryogenic transmission electron microscopy (cryo-TEM) revealed that the micellar cores of the aggregates made from these "triphilic" copolymers can undergo local phase separation to form a unique ultrastructure. In these multicompartment micelles, it appears that extended nonspherical domains, presumably made of nanocrystallites of the fluorocarbon block, are embedded in the hydrocarbon matrix forming the spherical micellar core. This novel internal structure of a micellar core is attributed to the mutual incompatibility of the fluorocarbon and hydrocarbon side chains in combination with the tendency of the used fluorocarbon acrylate monomer to undergo side-chain crystallization.